SEISMIC RESPONSE OF TROPAEUM TRAIANI MONUMENT, ROMANIA, BETWEEN HISTORY AND EARTHQUAKE ENGINEERING ASSESSMENTS

Emil-Sever GEORGESCU
Dr. Eng., National Research and Development Institute URBAN-INCERC and European Center for Buildings Rehabilitation - ECBR, Bucharest, Romania, ssever@incerc2004.ro

ABSTRACT

The paper presents the content, rationale and preliminary results of a study of the seismic response of Tropaeum Traiani monument, at Adamclisi, in Southern Dobrudja. It is a unique structure of its kind in Romania and the only Roman Empire trophy having kept the original core and a large number of stone parts. There is neither a professional assessment of the seismic source and motion size that caused the upper part overturning, nor an analysis of the monument’s dynamic response, based on the remnant pieces. The research aims at deriving the earthquake resisting capacity of specific sections based on dimensions and detailing of stone components. In order to obtain some input accelerations likely to initiate oscillation, shearing or sliding and overturning of the monument specific parts, a reverse technique is considered. The preliminary study allowed the assessment of oscillation amplification patterns at different heights, indicating the direction of collapse of upper pieces. The data are in a good correlation with some previous INCERC data about the particular directivity of some Vrancea motions in Dobrudja in 1990 and with places of stone parts unearthing. The estimation of a range of historical time for the destructive earthquake is also a goal.

Keywords: history; seismic response; Roman monument

1. INTRODUCTION

The stone structure of triumphal monument Tropaeum Traiani was completed by Romans in 109 A.D. in the North-Eastern part of Moesia Inferior, the present Southern land of Romanian Province Dobrudja, between Danube and the Black Sea. It consisted of a stepped base, a large cylindrical drum covered with metopes – sculptured scenes of battle, with an upper belt of parapets and merlons, continued with a truncated conical part over it and a central hexagonal tower. This slender part supported dedicatory inscriptions, a platform with statues of local prisoners and a tall military trophy, the main symbol of victory.
of Romans over warriors of Dacia and their allies. The diameter of the drum was some 40…43 m and the total height of monument reached some 37…40 m (Tocilescu et al, 1895) (Fig. 1).

Fig. 1. The replica of Tropaeum Traiani built in 1977 over the original core of the drum, foundation and stepped base. Photo taken in 2014 after rehabilitation in 2012 (www.mangalianews.ro).

It is likely to have been based on a design of Apollodor of Damascus, as it was the symbolic pair of Traian’s Column in Rome, with 29.78 m height, erected in 115 AD (Fig. 2 and 3).

Fig. 2. The reconstruction of the hexagonal tower, upper part statues, a stacked column and Trophy, suggested by Furtwangler (1903). The position of prisoner women is different in the 1977 reconstruction.

The site included a funerary military altar for the Roman soldiers fallen in the battles and a tumulus tomb. A fortified Roman City named also Tropaeum Traiani was settled nearby. (Tocilescu et al, 1895; Floescu, F.B., 1965; Barnea et al, 1979; Sampetru, 1984)

Almost all authors agreed that the upper part of the monument could have been destroyed by an earthquake at some centuries after erection, while the sculpted metopes were dismantled, most probably by people, in a later age (Tocilescu et al, 1895; Sampetru, 1984); a hypothesis of a reconstruction in the III-rd century was suggested (Dorutiu-Boila, 1987).

In the mid-XIXth century, the partly buried core of the drum and some detached stone remnants of the Adamclisi village attracted the attention of governing Ottoman authorities of the epoch and of some travelers and historians. In 1878 Dobrujia became a province of Romania. Eventually, Romanian archaeologist Grigore Tocilescu uncovered the site in 1882 (Tocilescu et al,1895). (Fig. 4, 5).

All movable remnants were been gradually transported to Bucharest in 1885-1902. (Tocilescu et al, 1895; Barbu and Schuster, 2006). In the 1960’s the stone pieces were taken back in an open air exhibition near the drum core, while in 1977 a Tropaeum Traiani reconstruction was built over the core
and all original stone pieces are exposed in a dedicated museum.

Fig. 4. Archaeological image after unearthing of Roman concrete core and steps area, proving the upper Trophy large stone pieces fallen in N-W (Photo: H. Jacobi, 1896. www.cimec.ro)

Fig. 5. Aerial view of the original weathered core and stepped base, including the base of the hexagonal tower and remnants of perimeter blocks, in the 1960’s (Fl. B. Florescu, 1965)

2. RATIONALE FOR A STUDY OF TROPAEUM TRAIANI MONUMENT SEISMIC SETTING AND RESPONSE

The seismic response of Tropaeum Traiani monument is worth of study because of several reasons:

− the monument was unique and very important in European and Worldwide history and history of art; its structure is the only of its kind in Romanian territory, and the only Roman trophy to survive to such extent, having kept the original core and a large number of stone parts, in a rather good state;
− although the literature about the historical and art significance of the trophy and depicted scenes is very rich, to date there is neither a professional assessment of the seismic source and motion size, nor an engineering assessment of dynamic response, based on the damage pattern of this monument;
− the past archaeological studies recovered most parts of the upper section and data on the possible detailing of structure, there are some data about the places of unearthing, to be studied in correlation with seismic response and overturning;
− some records of recent Vrancea motions were obtained by INCERC Strong Motion Network, hazard analysis are published (Sandi and Borcia, 2011), while some methods of modeling and assessment of rigid bodies motion under earthquake input evolved since 1980’s and are available.

3. PRELIMINARY RESULTS OF THE STUDY

For Tropaeum Traiani site, the overall study of seismic setting is proving that the area is at some 150…200 km of Vrancea seismogenic intermediate source and at some 50…100 km of local shallow / crustal sources of Black Sea Coast and Northern Bulgaria (Fig. 6).

Fig. 6. Site of Tropaeum Traiani - Adamclisi (noted TT on map) and the seismic setting of Romania. The Vrancea and South Dobrudja sources are opposite, but quite on the same direction. (Source: Seismicity of Romania 984 ad…2013. Catalog ROMPLUS, INFP-NIEP. Black dots are Vrancea intermediate earthquakes epicenters. Red dots are crustal earthquakes epicenters. http://www.infp.ro/catalog-seismic)
South-Dobrudja faults caused large earthquakes with damage and tsunami in ancient times ($M \approx 7.5$ in 545? 543 A.D. at Dionissopoli, near Shabla-Kaliakra fault) (Guidoboni, 1989; Rangelov et al, 2008).

Some archaeological data are taken as a proof that the Roman Fortress Capidava, built also by Traian on the Danube at some 50 km North of Tropaeum Traiani, was destroyed by a great earthquake or/and an invasion at the end of VI-th or beginning of VII-th century AD. (Florescu, R., 1965 and 2000-2001; Covacef, 1988-1989; www.cimec.ro).

The Vrancea earthquake of 1802 ($M_w = 7.9$) caused intensity of 8 MSK, while in 1940 ($M_w = 7.7$) and 1977 ($M_w = 7.4$) the intensity was 6 MSK in the area of study. There are several major faults crossing Dobrudja, but those of mid-part area were not active in the modern ages; in March 31, 1901, $M_w = 7.2$, $I_0 = X$ MSK, with $I = VII$-IX MSK in Romanian Dobrudja. Other local faults exist in the area of study.

Using some data arising from NPP Cernavoda safety reassessment of magnitude threshold for Vrancea source (Cernavoda NPP Units 1 & 2), a maximum observed magnitude is $M_w = 7.7$ and maximum possible magnitude is $M_w = 7.9$ is accepted. For Shabla Cape, the maximum observed magnitude is $M_w = 7.1$ and maximum possible magnitude is $M_w = 7.2$. Magnitudes for Dulovo Source, Intramoesic Fault and local earthquakes are lower. The same data source (www.cne.ro) indicated in 2007 the acceleration level as $a = 0.2 \text{ g}$ for $I = VIII$ MSK (DBE) and $a = 0.1 \text{ g}$ for $I = VII$ MSK (SDE).

The code P100-1/2006 gives a design acceleration PGA of 0.16 g for 100 years recurrence interval, while the new zoning map of code P100-1/2013 gives a design acceleration of 0.20 g for 225 years recurrence interval (codes P100-1/2006 and P100-1/2013).

Thus, in the engineering seismology part, the study checked how and if the Vrancea or Dobrudja sources would have been affecting the monument; enabling a comparison between seismic sources. On the other hand, checking the hypothesis and consequences of a motion with similarities of one of the May 30, 1990 Vrancea earthquakes recorded by INCERC in Cernavoda, having some effects just in Adamclisi Museum, proved a directivity that was different of Vrancea usual motions (Sandi and Borcia, 2011) (Fig, 7).

In the engineering part, the study was directed towards checking data of size, arrangement and detailing and suggesting alternative hypotheses for a structural – dynamic model of base construction and of upper stack of statues and trophy, which may differ of the reconstruction of 1977, based on existing parts and engineering assessment. In order to derive on this background the earthquake resisting capacity of specific sections, a reverse technique is intended to obtain some input accelerations likely to have been able to initiate shearing, oscillation and overturning of specific parts of the monument, and, if possible, correlations with spectral content of motion, in the next phases of research.

As preliminary results, we evaluated some patterns of oscillation amplification at different heights and the directivity of motion vs. capacity of resistance, direction and place of collapse, in correlation with other damage to parapets and merlons, and places of unearthing (Georgescu, 2014) (Table 1 and Fig. 8).
Table 1. Height to width ratio (h/b), as form and sensibility-oscillation amplification factors to overturning, for column, statues and Trophy at different separation joints

<table>
<thead>
<tr>
<th>Separation joint at specific levels</th>
<th>h/b ratio on transversal direction - T</th>
<th>h/b ratio on longitudinal direction - L</th>
<th>Consequences on rocking proneness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At column base</td>
<td>7.30</td>
<td>4.83</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Over drum I</td>
<td>6.63</td>
<td>4.38</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Over drum II</td>
<td>5.86</td>
<td>3.87</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Over drum III</td>
<td>5.03</td>
<td>3.32</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Trophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over drum IV – Trophy base</td>
<td>4.26</td>
<td>2.82</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Trophy waist</td>
<td>4.79</td>
<td>2.34</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Colossal prisoners statues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting Woman 1 base</td>
<td>1.38</td>
<td>0.94</td>
<td>Rocking initiation on T direction</td>
</tr>
<tr>
<td>Sitting Woman 2 base</td>
<td>1.57</td>
<td>1.07</td>
<td>Rocking initiation on L direction</td>
</tr>
<tr>
<td>Standing Man base</td>
<td>5.91</td>
<td>5.91</td>
<td>Rocking initiation on any direction</td>
</tr>
</tbody>
</table>

Note: For each section, the rocking can start on the direction corresponding to the greater ratio value. It was presumed that all pieces remain assembled up to the respective joint, and height is for all pieces above. The order and dimensions of drums are as in Sampetru, 1984, see Fig. 3

Fig.8. Approximate place of unearthing of stone pieces near the Monument’s core, as described by Tocilescu, seem to be strongly correlated with the direction of motions sources, as well as with the proneness of rocking given by their geometry. The Trophy was found in N-W, the column drums in S…S-W, one woman and the prisoner were in E-N-E, while the second woman was in W-S-W (Georgescu, 2014, considering data of Tocilescu et al, 1895, correlated with F. Bobu Florescu, 1965).

Some hypotheses on patterns and mechanisms of upper parts collapse, including the possibility and extent of collision between falling and base parts during collapse, were tested (Fig. 9).

Fig.9. A visual modeling of possible collapse pattern for stacked upper column and Trophy stone pieces. The damage pattern of prisoners statues, hexagonal tower, merlons, parapets and metopes is not depicted (Georgescu, 2014)

4. ABOUT THE HISTORICAL TIME OF DAMAGING EARTHQUAKE

It is known that the first thousand of years AD is not covered by the Romanian Catalogue of earthquakes, as it begins at 984 AD (www.infp.ro). For the period 1100-1973, Purcaru (1974) assessed a specific regularity of great Vrancea earthquakes occurrence, with 3 periods on century, quasicycles of ca. 100 years and supercycles of ca. 300 years; other authors, indicated 3 peaks of activity per
century (Enescu et al, 1974). Since the data in the first thousand of years AD are scarce, and a backward assessment of how would have struck Vrancea during the first millennium is not yet available, the study will include an attempt to estimate a range of historical span of time for the event that destroyed the monument. It would be of interest to evaluate whether the physics of the Vrancea source may allow quasicycles or supercycles (as in Purcaru, 1974) but without large events inside a century, while greater events occurred at 100...300 years interval, proving thus a considerable time-gap. Reversely, if the intra-century earthquakes and said cycles existed, as in the last thousand of years, their traces in the life disturbances of ancient civilizations must be investigated.

5. CONCLUSIONS

The study of the seismic response of Tropaeum Traiani monument is bridging the gaps between history, archaeology, seismology, architecture and earthquake engineering, while reinterpreting data gathered separately by each discipline across of over 120 years. Starting from forensic engineering studies, a new insight is possible, with results useful for earthquake design of important facilities in the area. In this respect, there is a need of traces and historical data recovery and interpretation. (Georgescu, 2004; 2014).

Some preliminary results allowed the assessment of oscillation amplification patterns at different heights, indicating the direction of collapse of upper pieces. The data are in a good correlation with some previous INCERC data about the particular directivity of some Vrancea motions in Dobrudja in 1990 and with places of stone parts unearthing.

ACKNOWLEDGEMENTS

The author gratefully acknowledges that an extended abstract of this paper was accepted to the Second European Conference on Earthquake Engineering and Seismology, 2ECEES, August 24-29, 2014, Istanbul, Turkey and an oral version was presented.

REFERENCES

Seismic response of Tropaeum Traiani monument

